🔥高效掌握NLP技术奥秘,轻松驾驭AI🔥

在人工智能时代,自然语言处理(NLP)技术越来越受到人们的关注。如果你想了解如何利用Python进行自然语言处理,那么《Python自然语言处理实战》绝对是一本值得一读的佳作。
本书由知名专家亲自撰写,从基础知识到实战应用,为你揭示Python NLP的奥秘。🎉真的是让我大开眼界,原来Python可以这么强大!🌟

🏆一、Python NLP入门

本书首先介绍了Python NLP的基本概念、发展历程和应用领域。通过了解Python NLP的背景和应用,读者可以更好地理解这项技术在当今社会的重要性。同时,作者还对Python编程语言进行了简要介绍,为后续学习奠定了基础。

✨二、NLP工具库与常用库

本书详细介绍了多个流行的NLP工具库和常用库,如NLTK、spaCy、Gensim等。通过了解这些库的优缺点、适用场景和使用方法,读者可以轻松选择合适的工具进行自然语言处理任务。此外,作者还介绍了如何利用jieba分词库进行中文文本处理,为中文NLP提供了实用的解决方案。

😎三、词法分析

词法分析是NLP任务中的基础环节,本书对此进行了详细讲解。作者介绍了中文分词的原理和方法,并比较了多种分词算法的优劣。通过学习本书,读者可以掌握中文分词的技巧,为后续的文本挖掘和情感分析等任务奠定基础。

👋四、句法分析

句法分析是NLP任务中的重要环节,本书也进行了深入探讨。作者介绍了句法分析的基本原理和常见算法,并通过实例演示了如何利用Python实现句法分析。通过学习本书,读者可以掌握句法分析的方法和技术,为自然语言理解(NLU)任务提供支持。

🌟五、文本挖掘与情感分析

本书还介绍了文本挖掘和情感分析的相关内容。作者详细阐述了这两个任务的原理、方法和实践经验。通过学习本书,读者可以掌握如何利用Python进行文本挖掘和情感分析,为舆情监控、产品评论等应用场景提供解决方案。

🌈六、机器翻译与语音识别

除了文本挖掘和情感分析,本书还介绍了机器翻译和语音识别这两个热门应用领域。作者分析了这两个任务的挑战性和现有的解决方案,并简单介绍了机器翻译和语音识别技术的发展历程和应用前景。通过学习本书,读者可以了解如何利用Python实现机器翻译和语音识别,为跨语言交流和智能交互提供支持。

📘七、实战项目与案例分析

本书的最后部分是实战项目与案例分析。作者通过多个具体的案例演示了如何将所学知识应用到实际项目中。这些案例涵盖了多个领域,如新闻分类、情感分析、问答系统等。通过学习本书的实战项目,读者可以进一步巩固所学知识,提高实际应用能力。

👍《Python自然语言处理实战》是一本非常值得阅读的书籍。它不仅介绍了自然语言处理的基础知识,还提供了丰富的实战项目和案例。通过阅读这本书,我不仅对自然语言处理有了更深入的了解,还掌握了许多实用的技能。如果你对自然语言处理感兴趣,或者想要在这个领域取得一定的成就,那么这本书绝对不容错过。它是一本值得每一位人工智能和机器学习爱好者珍藏的佳作。

👉 点击查看本书更多详情 👈

书籍信息

书名:Python自然语言处理实战
作者:涂铭 刘祥 刘树春
评分:6.8
出版日期:2018-05-01
出版社:机械工业出版社
ISBN:9787111597674
页数:281
定价:69

Python自然语言处理实战

内容简介

自然语言处理是一门融语言学、计算机科学、数学于一体的学科,比较复杂,学习门槛高,但本书巧妙地避开了晦涩难懂的数学公式和证明,即便没有数学基础,也能零基础入门。本书专注于中文的自然语言处理,以Python及其相关框架为工具,以实战为导向,详细讲解了自然语言处理的各种核心技术、方法论和经典算法。

三位作者在人工智能、大数据和算法领域有丰富的积累和经验,是阿里巴巴、前明略数据和七牛云的资深专家。同时,本书也得到了阿里巴巴达摩院高级算法专家、七牛云AI实验室Leader等专家的高度评价和鼎力推荐。
全书一共11章,在逻辑上分为2个部分:第一部分(第1、2、11章)主要介绍了自然语言处理所需要了解的基础知识、前置技术、Python科学包、正则表达式以及Solr检索等。
第二部分(第5-10章)第3~5章讲解了词法分析相关的技术,包括中文分词技术、词性标注与命名实体识别、关键词提取算法等。第6章讲解了句法分析技术,该部分目前理论研究较多,工程实践中使用门槛相对较高,且效果多是依赖结合业务知识进行规则扩展,因此本书未做深入探讨。第7章讲解了常用的向量化方法,这些方法常用于各种NLP任务的输入。第8章讲解了情感分析相关的概念、场景以及一般做情感分析的流程,情感分析在很多行业都有应用。第9章介绍了机器学习的重要概念,同时重点突出NLP常用的分类算法、聚类算法,还介绍了几个案例。第10章节介绍了NLP中常用的一些深度学习算法,这些方法比较复杂,但是非常实用,需要读者耐心学习。

书籍目录

序一
序二
前言
第1章 NLP基础 1
1.1 什么是NLP 1
1.1.1 NLP的概念 1
1.1.2 NLP的研究任务 3
1.2 NLP的发展历程 5
1.3 NLP相关知识的构成 7
1.3.1 基本术语 7
1.3.2 知识结构 9
1.4 语料库 10
1.5 探讨NLP的几个层面 11
1.6 NLP与人工智能 13
1.7 本章小结 15
第2章 NLP前置技术解析 16
2.1 搭建Python开发环境 16
2.1.1 Python的科学计算发行版——Anaconda 17
2.1.2 Anaconda的下载与安装 19
2.2 正则表达式在NLP的基本应用 21
2.2.1 匹配字符串 22
2.2.2 使用转义符 26
2.2.3 抽取文本中的数字 26
2.3 Numpy使用详解 27
2.3.1 创建数组 28
2.3.2 获取Numpy中数组的维度 30
2.3.3 获取本地数据 31
2.3.4 正确读取数据 32
2.3.5 Numpy数组索引 32
2.3.6 切片 33
2.3.7 数组比较 33
2.3.8 替代值 34
2.3.9 数据类型转换 36
2.3.10 Numpy的统计计算方法 36
2.4 本章小结 37
第3章 中文分词技术 38
3.1 中文分词简介 38
3.2 规则分词 39
3.2.1 正向最大匹配法 39
3.2.2 逆向最大匹配法 40
3.2.3 双向最大匹配法 41
3.3 统计分词 42
3.3.1 语言模型 43
3.3.2 HMM模型 44
3.3.3 其他统计分词算法 52
3.4 混合分词 52
3.5 中文分词工具——Jieba 53
3.5.1 Jieba的三种分词模式 54
3.5.2 实战之高频词提取 55
3.6 本章小结 58
第4章 词性标注与命名实体识别 59
4.1 词性标注 59
4.1.1 词性标注简介 59
4.1.2 词性标注规范 60
4.1.3 Jieba分词中的词性标注 61
4.2 命名实体识别 63
4.2.1 命名实体识别简介 63
4.2.2 基于条件随机场的命名实体识别 65
4.2.3 实战一:日期识别 69
4.2.4 实战二:地名识别 75
4.3 总结 84
第5章 关键词提取算法 85
5.1 关键词提取技术概述 85
5.2 关键词提取算法TF/IDF算法 86
5.3 TextRank算法 88
5.4 LSA/LSI/LDA算法 91
5.4.1 LSA/LSI算法 93
5.4.2 LDA算法 94
5.5 实战提取文本关键词 95
5.6 本章小结 105
第6章 句法分析 106
6.1 句法分析概述 106
6.2 句法分析的数据集与评测方法 107
6.2.1 句法分析的数据集 108
6.2.2 句法分析的评测方法 109
6.3 句法分析的常用方法 109
6.3.1 基于PCFG的句法分析 110
6.3.2 基于最大间隔马尔可夫网络的句法分析 112
6.3.3 基于CRF的句法分析 113
6.3.4 基于移进–归约的句法分析模型 113
6.4 使用Stanford Parser的PCFG算法进行句法分析 115
6.4.1 Stanford Parser 115
6.4.2 基于PCFG的中文句法分析实战 116
6.5 本章小结 119
第7章 文本向量化 120
7.1 文本向量化概述 120
7.2 向量化算法word2vec 121
7.2.1 神经网络语言模型 122
7.2.2 C&W模型 124
7.2.3 CBOW模型和Skip-gram模型 125
7.3 向量化算法doc2vec/str2vec 127
7.4 案例:将网页文本向量化 129
7.4.1 词向量的训练 129
7.4.2 段落向量的训练 133
7.4.3 利用word2vec和doc2vec计算网页相似度 134
7.5 本章小结 139
第8章 情感分析技术 140
8.1 情感分析的应用 141
8.2 情感分析的基本方法 142
8.2.1 词法分析 143
8.2.2 机器学习方法 144
8.2.3 混合分析 144
8.3 实战电影评论情感分析 145
8.3.1 卷积神经网络 146
8.3.2 循环神经网络 147
8.3.3 长短时记忆网络 148
8.3.4 载入数据 150
8.3.5 辅助函数 154
8.3.6 模型设置 155
8.3.7 调参配置 158
8.3.8 训练过程 159
8.4 本章小结 159
第9章 NLP中用到的机器学习算法 160
9.1 简介 160
9.1.1 机器学习训练的要素 161
9.1.2 机器学习的组成部分 162
9.2 几种常用的机器学习方法 166
9.2.1 文本分类 166
9.2.2 特征提取 168
9.2.3 标注 169
9.2.4 搜索与排序 170
9.2.5 推荐系统 170
9.2.6 序列学习 172
9.3 分类器方法 173
9.3.1 朴素贝叶斯Naive Bayesian 173
9.3.2 逻辑回归 174
9.3.3 支持向量机 175
9.4 无监督学习的文本聚类 177
9.5 文本分类实战:中文垃圾邮件分类 180
9.5.1 实现代码 180
9.5.2 评价指标 187
9.6 文本聚类实战:用K-means对豆瓣读书数据聚类 190
9.7 本章小结 194
第10章 基于深度学习的NLP算法 195
10.1 深度学习概述 195
10.1.1 神经元模型 196
10.1.2 激活函数 197
10.1.3 感知机与多层网络 198
10.2 神经网络模型 201
10.3 多输出层模型 203
10.4 反向传播算法 204
10.5 最优化算法 208
10.5.1 梯度下降 208
10.5.2 随机梯度下降 209
10.5.3 批量梯度下降 210
10.6 丢弃法 211
10.7 激活函数 211
10.7.1 tanh函数 212
10.7.2 ReLU函数 212
10.8 实现BP算法 213
10.9 词嵌入算法 216
10.9.1 词向量 217
10.9.2 word2vec简介 217
10.9.3 词向量模型 220
10.9.4 CBOW和Skip-gram模型 222
10.10 训练词向量实践 224
10.11 朴素Vanilla-RNN 227
10.12 LSTM网络 230
10.12.1 LSTM基本结构 230
10.12.2 其他LSTM变种形式 234
10.13 Attention机制 236
10.13.1 文本翻译 237
10.13.2 图说模型 237
10.13.3 语音识别 239
10.13.4 文本摘要 239
10.14 Seq2Seq模型 240
10.15 图说模型 242
10.16 深度学习平台 244
10.16.1 Tensorflow 245
10.16.2 Mxnet 246
10.16.3 PyTorch 246
10.16.4 Caffe 247
10.16.5 Theano 247
10.17 实战Seq2Seq问答机器人 248
10.18 本章小结 254
第11章 Solr搜索引擎 256
11.1 全文检索的原理 257
11.2 Solr简介与部署 258
11.3 Solr后台管理描述 263
11.4 配置schema 267
11.5 Solr管理索引库 270
11.5.1 创建索引 270
11.5.2 查询索引 276
11.5.3 删除文档 279
11.6 本章小结 281

去京东买

去淘宝买

版权声明:
作者:admin
链接:https://manboo.net/76.html
来源:学习笔记
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
QQ群
< <上一篇
下一篇>>
文章目录
关闭
目 录